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Abstract

A formulation of the intermolecular force in the nonideal gas lattice Boltzmann equation (LBE)

method is examined. Discretization errors in the computation of the intermolecular force cause

parasitic currents. The parasitic currents can be eliminated to round-off if the potential form of

the intermolecular force is used with compact isotropic discretization. Numerical tests confirm the

elimination of the parasitic currents.
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The lattice Boltzmann equation (LBE) methods for nonideal gases or binary fluids have

witnessed significant progress in recent years [1–10]. The success of the LBE methods can

largely be attributed to their mesoscopic and kinetic nature, which enables the simulation

of the macroscopic interfacial dynamics with the underlying microscopic physics. On the

macroscopic level, most of these two-phase LBE methods can be considered as diffuse in-

terface methods [11] in that the phase interface is spread on grid points and the surface

tension is transformed into a volumetric force. Generally, diffuse interface methods have

some advantages over sharp interface methods because computations are much easier for

three-dimensional (3-D) flows in which topological change of the interfaces is complicated.

When applied on the uniform grid, LBE methods enjoy the unit CFL (Courant, Friedrichs,

and Lewy) property that eliminates any numerical errors involved in the computation of the

advection operator. The inherent isotropy of the lattice guarantees isotropic discretization of

the differential operators in LBE. Free from advection errors and anisotropic discretization,

the LBE method can deliver much improved solutions with the same grid resolution.

One undesirable feature of LBE methods as a diffuse interface method is the existence

of parasitic currents. The parasitic currents are small amplitude velocity fields caused by

a slight imbalance between stresses in the interfacial region. These currents increase as the

surface tension force and can be reduced with large viscous dissipation, but never disappear

in most cases. In the case of a 2-D liquid droplet immersed in a vapor phase, the flow tends

to be organized into eight eddies with centers lying on the interface. In the diffuse interface

method, the key to reducing the parasitic currents lies in the formulation of the surface

tension force. Jacqmin [12, 13] suggested that the potential form of the surface tension force

was guaranteed to generate motionless equilibrium states without parasitic currents. Jamet

et al. [14] later showed that the potential form ensured the correct energy transfer between

the kinetic energy and the surface tension energy, eliminating parasitic currents.

Several attempts have been made to reduce the magnitude of the parasitic currents and

identify their origins [15–18] in the LBE framework. Nourgaliev et al. [15] employed a finite

difference approach in the streaming step of LBE and reported reduced currents compared

with the previous LBE methods. Lishchuk et al. [16] noted that the parasitic currents

were unwanted artifacts originating from the mesoscopic (or microscopic) nature of LBE

having the interface with a finite thickness, and they tried to incorporate sharp interface

kinematics into their LBE method. Cristea and Sofonea [17] argued that the directional
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derivative operator eα · ∇ in LBE (see Eq. (0.1) below) generated the parasitic currents in

the interfacial region. All these LBE schemes were able to reduce the magnitude of the

parasitic currents to a certain degree but never made them entirely disappear. Wagner [18]

proposed that parasitic currents are caused by non-compatible discretizations of the driving

forces and the different discretization errors for the forces compete and drive the parasitic

currents. He replaced the pressure form of the surface tension force with the potential form

of the surface tension force and observed that the size of the maximum velocity dropped to

O(10−16). Due to the numerical instability of the LBE method, however, a tiny correction

term with small amount of numerical viscosity had to be added in his simulation.

In this paper, we will show that the potential form of the intermolecular force in the

LBE context eliminates the parasitic currents and present a stable discretization scheme.

Specifically, the discrete Boltzmann equation (DBE) proposed by He et al. [7, 19] will

be analyzed, but the analysis is equally valid for other LBE methods. Stability, order of

accuracy, and isotropy of the spatial discretization will be examined.

The DBE with external force F can be written as

∂fα

∂t
+ eα · ∇fα = −fα − f eq

α

λ
+

(eα − u) · F
ρc2

s

f eq
α , (0.1)

where fα is the particle distribution function, eα is the microscopic particle velocity, u is

the macroscopic velocity, ρ is the density, cs is a constant, and λ is the relaxation time. The

equilibrium distribution function f eq
α is given by

f eq
α = tαρ

[
1 +

eα · u
c2
s

+
(eα · u)2

2c4
s

− (u · u)

2c2
s

]
, (0.2)

tα being a weighting factor. In the above, F is the averaged external force experienced

by each particle. In the case of a van der Waals fluid without the effect of gravity, the

intermolecular attraction through the mean field approximation and the exclusion volume

of molecules yield the external force [7]

F = ∇
(
ρc2

s − p0

)
+ ρκ∇∇2ρ, (0.3)

where κ is the gradient parameter and p0 is the thermodynamic pressure that separates

phases. We call this form the pressure form of the intermolecular force, or simply the

pressure form.
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In this model, phase separation is induced by mechanical instability in the supernodal

curve of the phase diagram. Unfortunately, He and coworkers [19] reported numerical insta-

bility due to the stiffness of F. Lee and Lin [6] later showed that the compact and isotropic

finite difference yields stable discretization as long as the mechanically unstable region is

resolved with enough grid points. The first term of F is to cancel out with the ideal gas

contribution to the pressure. It is not responsible for the parasitic currents but may cause se-

rious numerical instability when an inappropriate discretization scheme is used. The second

term, the thermodynamic pressure gradient, is mechanically unstable in the narrow interfa-

cial region, in which ∂p0/∂ρ changes its sign. The number of grid points in this region should

be chosen large enough to resolve the change. The third term is associated to the interfacial

stress and should balance the thermodynamic pressure gradient to maintain the equilibrium

interface profile. Without this term, the interface profile would be a step function, which is

numerically unsustainable unless artificial smearing of the interface is introduced, sacrificing

accuracy. We note that the interfacial stress term alone does not trigger the parasitic cur-

rents. The parasitic currents are initiated by a slight imbalance between the thermodynamic

pressure gradient term and the interfacial stress term as a result of truncation error.

To avoid the truncation error, we recast Eq. (0.3) in the same form as the interfacial

stress term using the thermodynamic identity. The mixing energy density for the isothermal

system is

Emix (ρ,∇ρ) = E0 (ρ) +
κ

2
|∇ρ|2, (0.4)

where the bulk energy E0 is related to the thermodynamic pressure p0 by the equation of

state (EOS), the chemical potential is the derivative of the bulk energy with respect to the

density

p0 = ρ
∂E0

∂ρ
− E0, µ0 =

∂E0

∂ρ
. (0.5)

Using the relations Eq. (0.5), one can rewrite Eq. (0.3) in the potential form:

F = ∇ρc2
s − ρ∇

(
µ0 − κ∇2ρ

)
. (0.6)

The equilibrium profile is determined such that the energy is minimized. Now µ = µ0−κ∇2ρ

is treated as a scalar and discretized in like manner.

In the vicinity of the critical point, EOS can be simplified [20, 21] for control of the

interface thickness and surface tension at equilibrium. We assume that the bulk energy E0
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is

E0 (ρ) ≈ β
(
ρ− ρsat

v

)2 (
ρ− ρsat

l

)2
, (0.7)

where β is a constant that is related to the compressibility of bulk phases, and ρsat
v and ρsat

l

are the densities of vapor and liquid phases at saturation, respectively. In a plane interface

at equilibrium, the density profile across the interface is

ρ (z) =
ρsat

l + ρsat
v

2
+

ρsat
l − ρsat

v

2
tanh

(
2z

D

)
, (0.8)

where D is the interface thickness, which is chosen based on accuracy and stability. Given D,

β, and the saturation densities, one can compute the gradient parameter κ and the surface

tension force σ

κ =
βD2(ρsat

l − ρsat
v )2

8
, σ =

(ρsat
l − ρsat

v )3

6

√
2κβ. (0.9)

In the limiting case of zero κ, the interface thickness D goes to zero. The above simplification

may cease to be valid away from the critical point, namely, at large density difference

or equivalently low temperature. In our experience, the numerically sustainable interface

thickness is D > 3, below which the LBE method becomes unstable or the interface shape

is distorted. At large density difference, either β or σ is compromised because of the lower

bound for D. Since the speed of sound is related to the bulk energy, changing β implies

modification of the speed of sound of the bulk fluid.

LBE is obtained by discretizing Eq. (0.1) along characteristics over the time step δt:

fα(x + eαδt, t + δt)− fα(x, t) = −
∫ t+δt

t

fα − f eq
α

λ
dt′ +

∫ t+δt

t

(eα − u) · (∇ρc2
s − ρ∇µ)

ρc2
s

f eq
α dt′.

(0.10)

The time integration in [t, t + δt] is coupled with the space integration in [x,x + eαδt].

Application of the trapezoidal rule for second-order accuracy and unconditional stability

leads to

fα(x + eαδt, t + δt)− fα(x, t) = −fα−feq
α

2τ |(x,t) − fα−feq
α

2τ |(x+eαδt,t+δt) (0.11)

+ δt
2

(eα−u)·(∇ρc2s−ρ∇µ)
ρc2s

f eq
α |(x,t) + δt

2

(eα−u)·(∇ρc2s−ρ∇µ)
ρc2s

f eq
α |(x+eαδt,t+δt),

where the nondimensional relaxation time τ = λ/δt and is related to the kinematic viscosity

by ν = τc2
sδt.

The space discretization of δteα · ∇ρ and δteα · ρ∇µ is of critical importance to stability

and elimination of the parasitic currents. Lee and Lin [6] showed that discretizations of
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these directional derivatives at (x + eαδt) and (x) need to be compact around (x + eαδt):

δteα · ∇ρ|(x+eαδt) =
ρ(x + 2eαδt)− ρ(x)

2
, (0.12)

δteα · ∇ρ|(x) =
−ρ(x + 2eαδt) + 4ρ(x + eαδt)− 3ρ(x)

2
. (0.13)

Eqs. (0.12) and (0.13) are second-order accurate and require only three lattice sites around

(x+eαδt). In Eq. (0.13), a backward characteristic approximation is used. Derivatives other

than the directional derivatives can be obtained by taking moments of the 1-D second order

central difference along characteristics yielding isotropic finite differences. Specifically, the

first and the second derivatives are discretized as follows:

∇ρ|(x) =
∑

α %=0

tαeα [ρ(x + eαδt)− ρ(x− eαδt)]

2c2
sδt

, (0.14)

∇2ρ|(x) =
∑

α %=0

tα [ρ(x + eαδt)− 2ρ(x) + ρ(x− eαδt)]

c2
sδt

2
. (0.15)

The isotropic discretization in LBE and its force terms prevents the parasitic currents from

developing into organized eddies.

Here, we introduce modified particle distribution function f̄α and equilibrium distribution

function f̄ eq
α to facilitate computation:

f̄α = fα +
fα − f eq

α

2τ
− δt

2

(eα − u) · (∇ρc2
s − ρ∇µ)

ρc2
s

f eq
α , (0.16)

f̄ eq
α = f eq

α −
δt

2

(eα − u) · (∇ρc2
s − ρ∇µ)

ρc2
s

f eq
α . (0.17)

Note that δteα ·∇ρ and δteα · ρ∇µ in the definition of the modified equilibrium distribution

f̄ eq
α is discretized by the central difference (Eq. (0.12)). The density and the momentum can

be computed by taking the zeroth and first moments of the modified particle distribution

function:

ρ =
∑

α

fα =
∑

α

f̄α, (0.18)

ρu =
∑

α

eαfα =
∑

α

eαf̄α +
δt

2

(
∇ρc2

s − ρ∇µ
)
. (0.19)

The above LBE can then be recast in a simpler form:

f̄α(x+eαδt, t+δt)−f̄α(x, t) = − 1

τ + 0.5

(
f̄α − f̄ eq

α

)
|(x,t)+

(eα − u) · (∇ρc2
s − ρ∇µ)

ρc2
s

f eq
α |(x,t)δt.

(0.20)
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Two points are noteworthy. Although Eq. (0.20) appears to be explicit in time, it is fully

implicit for the relaxation term and the intermolecular force terms alike and therefore, is

unconditionally stable and second order accurate. Moreover, for Eq. (0.20) to be equivalent

to Eq. (0.12), the directional derivatives in the force terms are discretized by the mixed

difference, for instance

eα · ∇ρ|(x) =
1

2

[
ρ(x + eαδt)− ρ(x− eαδt)

2δt
+
−ρ(x + 2eαδt) + 4ρ(x + eαδt)− 3ρ(x)

2δt

]
.

(0.21)

The test cases confirm that the LBE with the potential form is able to reach an equilib-

rium. Fig. 1 shows ρu fields after 100, 000 time steps are plotted, when steady-state solutions

are assumed. As initial conditions, a 2-D droplet is generated on 100× 100 periodic compu-

tational domain for a D2Q9 lattice. The interface thickness, droplet radius, and relaxation

time are D = 4, R0 = 25, and τ = 0.5, respectively. We fixed β = 0.01, ρsat
l = 1.0, and

ρsat
v = 0.1, in which case the surface tension is σ = 2.187× 10−3. Values of ρu are magnified

by 2×105 times in (a) and 1×1015 times in (b). Fig. 1(a) indicates the presence of parasitic

currents that are roughly aligned in the direction normal to the interface, when the pressure

form of the intermolecular force is used. Away from the interface, the parasitic currents

rapidly disappear.

Inexact satisfaction of ∇p0 = ρ∇µ0 is responsible for the parasitic currents. Following

the analysis of Jamet et al. [14], the discretized relation for ∇p0|(x) = ρ∇µ0|(x) should be

∑

α%=0

tαeα [p0(x + eαδt)− p0(x− eαδt)]

2c2
sδt

=
∑

α %=0

tαeαρ [µ0(x + eαδt)− µ0(x− eαδt)]

2c2
sδt

. (0.22)

However, the Taylor-series expanding the pressure and the chemical potential reveals that

the truncation error is proportional to the density gradients:

∇p0|(x) − ρ∇µ0|(x) =
∑

α %=0

tαeα

6c2
sδt

[(
∂µ0

∂ρ

)
(δteα · ∇ρ) (δteα · ∇)2 ρ

]

(x)

. (0.23)

We observe that the flow does not exhibit any organized eddies despite the presence of par-

asitic currents. We speculate that the absence of eddies is due to the isotropic discretization

of LBE. The magnitude of the currents may be small, but the most undesirable outcome of

the parasitic currents is the violation of mass conservation. Fig. 1(a) shows that the droplet

radius is increased after long time integration. Ideally, the net balance of mass flux across

the interface region should be zero, even if values of ρu remain finite. The potential form
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eliminates the parasitic currents, as numerically confirmed in Fig. 1(b). The radius of the

droplet is also well maintained.

Effects of β on the parasitic currents are examined in Fig. 2(a). The relaxation time

and the interface thickness are fixed at τ = 0.5 and D = 4, respectively. By fixing τ , the

viscosity of the fluid is fixed. Given the interface thickness and the density ratio, higher

β means higher surface tension force as well as less compressibility, thus implying faster

convergence rate. When the time is nondimensionalized to the viscous time of the vapor

phase tv = ρsat
v νsat

v R0/σ, the convergence rates for different β and models collapse on a

single curve. The maximum kinetic energy with the potential form decreases exponentially

to round-off. On the contrary, the maximum kinetic energy with the pressure form initially

decreases at the same rate as that of the potential form, but eventually stagnates. The

maximum steady-state kinetic energy of the pressure form decreases with β, as the surface

tension force decreases accordingly. A similar trend can be found when β is fixed and the

relaxation time τ is varied in Fig. 2(b).

We conducted comparisons of our method with previously proposed LBE models un-

der identical computational conditions. Nourgaliev et al. [15] compared their model based

on the Swift et al.’s bulk energy model [3] with the Shan and Chen’s interparticle in-

teraction potential model [2]. They used the van der Waals EOS, whose free energy is

E0 = ρRT ln (ρ/(1− ρb)) − aρ2. In their work a = 9/49, b = 2/21, and RT = 0.56 were

chosen. The grid size was 100 × 100, the droplet radius was R0 = 20, the relaxation time

was τ = 0.3, and the gradient parameter was κ = 0.037. We take the identical parameters

and form of the free energy. Table I shows the maximum value of the parasitic currents in

terms of Mach number. Only our model eliminates the parasitic currents. Since round-off

error is determined by u2 in the equilibrium distribution, the parasitic currents in terms of

Mach number are reduced to the square-root of u2 at best.

To test stability of the proposed model, we examine inertial coalescence of droplets,

driven by the surface tension. Industrial applications of this process may include emulsion

stability, ink-jet printing, and coating applications. At the moment of contact of droplets,

the inversion of radius of curvature causes a singularity, forming a liquid bridge between

the droplets. The radius of the liquid bridge R0 then grows as R0(t) ∝
√

t by equating

capillary and inertial forces. Aarts et al. [22] experimentally found the following prefactors

for the scaling relation: water, 1.14; 5 mPa s silicon oil, 1.24; and 20 mPa s silicon oil, 1.11.
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Inviscid incompressible simulation by Ducheminet al. [23] predicted a rather large prefactor

of 1.62. The initialization of simulation of coalescence is particularly challenging. Duchemin

et al. [23] and Menchaca-Rocha et al. [24] smoothed the interface profile in the region of

liquid bridge to avoid infinitely large capillary forces caused by the singular curvature. An

effect of smoothing could be slower initial growth of the radius of the liquid bridge as a

result of smaller capillary forces.

Instead of smoothing the initial profile, we choose to separate two stationary droplets by

the equilibrium interface thickness D as shown in Figure 3(a). The intermolecular attraction

acts at this distance and initiates the formation of the liquid bridge. Fig. 3 shows coalescence

of two droplets. Two 3-D droplets are generated on a 200×400×200 periodic computational

domain for a D3Q27 lattice. The interface thickness, droplet radius, and relaxation times

for liquid and vapor phases are D = 4, R0 = 50, and τ sat
l = 0.01 and τ sat

v = 0.2, respectively.

We fixed β = 0.02, ρsat
l = 1.0, and ρsat

v = 0.001. Time is nondimensionalized to the

inertial time of the liquid phase ti =
√

ρsat
l R3

0/σ [23] and is measured from the moment of

contact (Fig. 3(b)). The results are in good qualitative agreement with previous experimental

results [22, 23], except for the elongated neck region due to initial separation. The finite

value of the initial separation relative to the radius of droplets can be reduced by adopting

a finer mesh or an adaptive mesh refinement.

Although the approach based on free energy is derived to describe the near-critical be-

havior of nonideal gases at small density ratio, it is generally believed to be valid even when

the density gradients become large [25]. As β decreases in the present model, however, the

approximation of the bulk energy by Eq. (0.7) may become inaccurate. The effect of β on the

inertial coalescence of droplets plotted in Fig. 4, shows time evolution of the nondimension-

alized neck radii for β = 0.02, 0.01, and 0.005. The differences in the results are negligible in

this range of β. The radii of the neck converge to the line whose slope is 1.2 [22] after rapid

early growth, which is governed by the singular curvature at the moment of contact. Using

an inviscid incompressible numerical method, Menchaca-Rocha et al. [24] reported slower

initial growth of the neck radius, followed by transition region.

In summary, two different sources of error in the computation of the surface tension force

lead to development of the parasitic currents. A slight imbalance between the pressure

gradient and the stresses due to truncation error initiates the parasitic currents. As long

as isotropy of the numerical scheme is retained, the parasitic currents are kept aligned in
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TABLE I: Maximum value of the parasitic currents in terms of Mach number at steady state .

Shan and Chen Model [15] Nourgaliev et al. [15] Present

Mamax 3× 10−2 2× 10−4 8× 10−15

the direction normal to the interface. If isotropy is not maintained, however, the parasitic

currents eventually develop into the organized flow patterns. The LBE method with isotropic

discretizations can avoid formation of organized flow patterns. Furthermore, the use of the

potential form of the intermolecular force eliminates the parasitic currents to round-off.
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(b) Potential form

FIG. 1: ρu fields after 100, 000 time steps. Values of ρu are magnified by 2× 105 times in (a) and

1 × 1015 times in (b). Solid lines represent ρ = 0.2, 0.55, and 0.9, and dashed lines represent the

initial location of ρ = 0.55.
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FIG. 2: Time evolution of the maximum kinetic energy for a potential form and a pressure form

of the intermolecular force. τ is fixed at 0.5 in (a). In (b) β is fixed at 0.01.
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FIG. 3: Coalescence of two droplets on 200 × 400 × 200 lattice at D = 4, R0 = 50, β = 0.02,

τ sat
l = 0.01, τ sat

v = 0.2, ρsat
l = 1.0, and ρsat

v = 0.001. Time is non-dimensionalized to the inertial

time of the liquid phase ti =
√

ρsat
l R3

0/σ.
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FIG. 4: The time evolution of the radius of the neck for inertia dominated flows. The full line has

a slope of 1.2 [22].
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